APPROACHES FOR STUDYING OF REGIONAL DISPARITIES: ADVANTAGES AND LIMITATIONS

IVAYLO IVANOV, ADRIANA STREKALOVSKA-GARKOVA, RADOSTINA SOTIROVA, SPASIMIRA GERANOVA

UNIVERSITY OF FORESTRY, SOFIA BULGARIA

Aim and Tasks

The aim was analysing the advantages and limitations of using them to measure disparities at regional and local level.

The tasks were:

- a critical literature review of used approaches in world organisations and the leading economies in Europe, and
- testing them with statistical data for Bulgaria, published by the National Statistical Institute.

Approaches

Integral coefficient for structural inequalities

Gini coefficient

- Lorenz curve
- HDI

► Integral index

Integral coefficient for structural inequalities

$$K_{D} = \sqrt{\frac{\left|\sum_{i=1}^{N} (v_{1i} + v_{2i})^{2}\right|}{\left|\sum_{i=1}^{N} v_{1i}^{2} + \sum_{i=1}^{N} v_{2i}^{2}\right|}}$$

- K_D integral coefficient for structural inequalities
- V_{1i} relative share of the first indicator in the ith territorial unit
- V_{2i} –relative share of the second indicator in the ith territorial unit
- N number of territorial units

Gini coefficient

$$\mathbf{G}_{\mathsf{R}} = \left[1 - \sum_{i=1}^{\mathsf{n}} \left[\left(\mathbf{C}_{1i} - \mathbf{C}_{1i-1}\right) \left(\mathbf{C}_{2i} + \mathbf{C}_{2i-1}\right) \right] \right] \cdot 100$$

 G_R – Gini coefficient (%)

 C_{1i} – cumulative frequency of the i-th territory in the first indicator(%) C_{1i} – cumulative frequency preceding the i-th territory in the first indicator (%)

 C_{2i} – cumulative frequency of the i-th territory in the second indicator (%)

 $C_{2i\-1}$ – cumulative frequency preceding the i-th territory in the Second indicator (%)

n – number of territorial units

Lorenz curve

HDI

 $Dimension index = \frac{actual value - minimum value}{maximum value - minimum value}$

Dimension Index = $\frac{\ln[\text{actual value}] - \ln[\text{minimum value}]}{\ln[\text{maximum value}] - \ln[\text{minimum value}]}$

$$HDI = \sqrt[3]{I_{health} \times I_{education} \times I_{income}}$$

Integral index

1. Calculating the standardised deviation of indicators (i) for different regions (j) of the arithmetical average of each indicator in order to avoid differences in their scale.

$$Z_{ij} = \frac{X_{ij} - \overline{X}}{\sigma_i}$$

2. Establishing a Z-matrix by standardized indicators zij that determines the standard region.

3. Calculating the final assessment/score.

$$RI_{j} = \sqrt{\sum_{i=1}^{n} (z_{ij} - z_{im})^{2}}$$

RII 2018

MWMI 2017

Acknowledgment

This research was supported by the grant No KΠ-06-M25/2 on December 13, 2018 Research of regional and local socio-economic inequalities of Bulgaria (ReLoSEIn), financed by the National Science Fund of Bulgaria.

Contacts

Ivaylo Ivanov Faculty of Business Management University of Forestry 10, St. Kliment Ohridski blvd. Sofia 1797, Bulgaria

email: ihivanov@hotmail.com